Source code for tdl.noise

    This module provides advanced noise generation.

    Noise is sometimes used for over-world generation, height-maps, and
    cloud/mist/smoke effects among other things.

    You can see examples of the available noise algorithms in the libtcod
    documentation `here

import random as _random

from tcod import ffi as _ffi
from tcod import lib as _lib

import tdl as _tdl
from . import style as _style



_NOISE_MODES = {'FLAT': _lib.TCOD_noise_get,
                'FBM': _lib.TCOD_noise_get_fbm,
                'TURBULENCE': _lib.TCOD_noise_get_turbulence}

[docs]class Noise(object): """An advanced noise generator. .. deprecated:: 3.2 This class has been replaced by :any:`tcod.noise.Noise`. Args: algorithm (Text): The primary noise algorithm to be used. Can be one of 'PERLIN', 'SIMPLEX', 'WAVELET' - 'PERLIN' - A popular noise generator. - 'SIMPLEX' - In theory this is a slightly faster generator with less noticeable directional artifacts. - 'WAVELET' - A noise generator designed to reduce aliasing and not lose detail when summed into a fractal (as with the 'FBM' and 'TURBULENCE' modes.) This works faster at higher dimensions. mode (Text): A secondary parameter to determine how noise is generated. Can be one of 'FLAT', 'FBM', 'TURBULENCE' - 'FLAT' - Generates the simplest form of noise. This mode does not use the hurst, lacunarity, and octaves parameters. - 'FBM' - Generates fractal brownian motion. - 'TURBULENCE' - Generates detailed noise with smoother and more natural transitions. hurst (float): The hurst exponent. This describes the raggedness of the resultant noise, with a higher value leading to a smoother noise. It should be in the 0.0-1.0 range. This is only used in 'FBM' and 'TURBULENCE' modes. lacunarity (float): A multiplier that determines how quickly the frequency increases for each successive octave. The frequency of each successive octave is equal to the product of the previous octave's frequency and the lacunarity value. This is only used in 'FBM' and 'TURBULENCE' modes. octaves (float): Controls the amount of detail in the noise. This is only used in 'FBM' and 'TURBULENCE' modes. seed (Hashable): You can use any hashable object to be a seed for the noise generator. If None is used then a random seed will be generated. """ def __init__(self, algorithm='PERLIN', mode='FLAT', hurst=0.5, lacunarity=2.0, octaves=4.0, seed=None, dimensions=4): if algorithm.upper() not in _NOISE_TYPES: raise _tdl.TDLError('No such noise algorithm as %s' % algorithm) self._algorithm = algorithm.upper() if mode.upper() not in _NOISE_MODES: raise _tdl.TDLError('No such mode as %s' % mode) self._mode = mode.upper() if seed is None: seed = _random.getrandbits(32) try: seed = int(seed) except TypeError: seed = hash(seed) self._seed = seed # convert values into ctypes to speed up later functions self._dimensions = min(_MAX_DIMENSIONS, int(dimensions)) if self._algorithm == 'WAVELET': self._dimensions = min(self._dimensions, 3) # Wavelet only goes up to 3 self._random = _lib.TCOD_random_new_from_seed( _MERSENNE_TWISTER, _ffi.cast('uint32_t', self._seed), ) self._hurst = hurst self._lacunarity = lacunarity self._noise = _lib.TCOD_noise_new(self._dimensions, self._hurst, self._lacunarity, self._random) _lib.TCOD_noise_set_type(self._noise, _NOISE_TYPES[self._algorithm]) self._noiseFunc = _NOISE_MODES[self._mode] self._octaves = octaves self._useOctaves = (self._mode != 'FLAT') self._arrayType = 'float[%i]' % self._dimensions #self._cFloatArray = _ctypes.c_float * self._dimensions #self._array = self._cFloatArray() def __copy__(self): # using the pickle method is a convenient way to clone this object return self.__class__(*self.__getstate__()) def __getstate__(self): return (self._algorithm, self._mode, self._hurst, self._lacunarity, self._octaves, self._seed, self._dimensions) def __setstate__(self, state): self.__init__(*state)
[docs] def get_point(self, *position): """Return the noise value of a specific position. Example usage: value = noise.getPoint(x, y, z) Args: position (Tuple[float, ...]): The point to sample at. Returns: float: The noise value at position. This will be a floating point in the 0.0-1.0 range. """ #array = self._array #for d, pos in enumerate(position): # array[d] = pos #array = self._cFloatArray(*position) array =, position) if self._useOctaves: return (self._noiseFunc(self._noise, array, self._octaves) + 1) * 0.5 return (self._noiseFunc(self._noise, array) + 1) * 0.5
__all__ = [_var for _var in locals().keys() if _var[0] != '_'] Noise.getPoint = _style.backport(Noise.get_point)